Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(12): 2885-2891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38558307

RESUMEN

Detecting, separating, and characterizing airborne microplastics from other airborne particulates is currently challenging due to the various instrumental constraints and related sample preparation hurdles that must be overcome. The ability to measure these real-world environments is needed to better assess the risks associated with microplastics. To that end, the current study focused on developing a methodology for sampling and characterizing airborne microplastics. Particulate sampling was carried out at a municipal materials recovery facility near a conveyer belt containing sorted plastic materials to collect airborne environmental particles on filters. Nucleopore filters were mounted on Teflon support rings, coated with 100 nm aluminum to reduce the background signal for micro-Raman spectroscopy, and marked with a fiducial pattern using a laser engraver. The fiducial pattern was crucial in identifying samples, relocating particles, and efficiently enabling orthogonal measurements on the same samples. Optimum sampling conditions of 2 h at 25 L/min were determined using light microscopy to evaluate the particle loadings. The filters were then cut into slices which were attached to sections of thin beryllium-copper sheeting for easy transfer of the filter between microscopy platforms. Scanning electron microscopy was used to identify carbon-rich particles. Light microscopy was used to identify colored particles which were also carbon-rich which were then analyzed using micro-Raman spectroscopy to identify specific polymers.

2.
Anal Chem ; 95(33): 12373-12382, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37567156

RESUMEN

The transport and chemical identification of microplastics and nanoplastics (MNPs) are critical to the concerns over plastic accumulation in the environment. Chemically and physically transient MNP species present unique challenges for isolation and analysis due to many factors such as their size, color, surface properties, morphology, and potential for chemical change. These factors contribute to the eventual environmental and toxicological impact of MNPs. As analytical methods and instrumentation continue to be developed for this application, analytical test materials will play an important role. Here, a direct mass spectrometry screening method was developed to rapidly characterize manufactured and weathered MNPs, complementing lengthy pyrolysis-gas chromatography-mass spectrometry analysis. The chromatography-free measurements took advantage of Kendrick mass defect analysis, in-source collision-induced dissociation, and advancements in machine learning approaches for the data analysis of complex mass spectra. In this study, we applied Gaussian mixture models and fuzzy c-means clustering for the unsupervised analysis of MNP sample spectra, incorporating clustering stability and information criterion measurements to determine latent dimensionality. These models provided insight into the composition of mixed and weathered MNP samples. The multiparametric data acquisition and machine learning approach presented improved confidence in polymer identification and differentiation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38567026

RESUMEN

We compare the optical properties of various geometric shapes with single atmospheric Asian dust and marine background air particles collected at Mauna Loa Observatory. Three-dimensional representations of the particles were acquired with focused ion-beam (FIB) tomography, which involves FIB milling of individual particles followed by imaging and elemental mapping with scanning electron microscopy. Particles were heterogeneous with mainly dolomite or calcite and a minor amount of iron; marine air particles contained gypsum but no iron. Extinction and backscatter fraction were calculated with the discrete dipole approximation method. Geometric shapes were grouped as ellipsoids (sphere, spheroid, ellipsoid), cuboids (cube, square prism, rectangular prism), and pyramids (tetrahedron, triangular pyramid). Each group represented a progression of shapes with 1, 2, or 3 non-identical axes. Most shapes underestimated particle extinction and overestimated the backscatter fraction. Not surprisingly, extinction and the backscatter fraction of the sphere and cube were furthest from those of the particles. While the 3-axis ellipsoid and rectangular prism were closer dimensionally to the particles, extinction and the backscatter fraction for the 2-axis spheroid and square prism, respectively, were often closer to the particles. The extinction and backscatter fraction for the tetrahedron and triangular pyramid were closer on average to the actual particles than were the other shapes. Tetrahedra have the advantage that parameterization of an aerosol model for remote sensing would not require an aspect ratio distribution. Particle surface roughness invariably decreased the backscatter fraction. While surface roughness typically contributes a minor part to overall scattering, in some cases the larger surface area of the tetrahedron and triangular pyramid sufficiently accounted for enhanced forward scattering of particles from surface roughness.

4.
J Aerosol Sci ; 1502020.
Artículo en Inglés | MEDLINE | ID: mdl-33281223

RESUMEN

Transmissivity and absorptivity measurements were carried out simultaneously in the visible (wavelength of 532 nm) at laboratory conditions using particle-laden filters obtained from a three-wavelength particle/soot absorption photometer (PSAP). The particles were collected on filters from wildland fires over the Pacific Northwest during the Department of Energy Biomass Burning Observation Project (BBOP) field campaign in 2013. The objective of this investigation was to apply this measurement approach, referred to as simultaneous transmission/absorption photometry (STAP), to estimate the aerosol extinction coefficient from actual field-campaign filter aerosol, and compare results with the PSAP. The STAP approach offers several advantages over the PSAP, including estimation of the extinction coefficient from temperature measurements (avoiding the complexities associated with filter reflectivity/scattering measurements), as well as determination of the filter optical properties and filter effects on particle absorption (resulting in particle absorption enhancement). The experimental arrangement included a laser probe beam impinging normal to the particle-coated surface of a vertically mounted filter, and a thermocouple placed flush in the middle of (and in thermal contact with) the filter uncoated back surface. With this simple arrangement, the transmissivity and absorptivity were determined simultaneously at a given laser beam wavelength. The measurement repeatability was better than 0.3 K (95 % confidence level) for temperature and 0.4 mW for laser power. The limit of detection for the extinction coefficient was estimated to be (8 to 12) Mm-1 (95 % confidence level) at about 1.9 mW laser power. The extinction coefficient was determined through measurement of both PSAP blank and exposed filters. Filters were obtained from nine different aircraft flights conducted during the BBOP campaign, representing different flight patterns, days, stages of burning, landscapes, and wildland fires. The STAP extinction coefficient matched the darkness of the filter coating, however the PSAP-filter results did not follow the same order. Although there were differences in transmissivity between the two techniques, the estimated values for absorption coefficient were in good agreement.

5.
Atmos Environ (1994) ; 2412020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38515933

RESUMEN

Thermal-Optical Analysis (TOA), a commonly implemented technique used to measure the amount of particulate carbon in the atmosphere or deposited on a filter substrate, distinguishes organic carbon (OC) from elemental carbon (EC) through the monitoring of laser light, heating, and measuring evolved carbon. Here, we present a method to characterize the TOA transmission method with an aqueous binary mixture containing EC and OC that can easily be deposited onto a filter at low volumes. Known amounts of EC and OC were deposited onto a quartz-fiber filter and analyzed with different temperature protocols. Results with the NIST-EPA-C temperature protocol agreed with the reference values to better than 2 % for EC, OC, total carbon (TC), and EC/TC. Indicated TC for all temperature protocols was within 5 % of the reference value while all protocols reproduced EC/TC ratios with an uncertainty less than 10 %.

6.
J Geophys Res Atmos ; 124(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-32166055

RESUMEN

We have determined optical properties of heterogeneous particles from aerosol samples collected at Hawaii's Mauna Loa Observatory. Back trajectories, satellite imagery, and composition differences among particles from scanning electron microscopy revealed a subset of particles with dolomite or calcite that likely came from Asia. Using focused ion-beam tomography and the discrete dipole approximation, we show how small amounts of an iron phase (oxide or carbonate), or in one case soot, affected extinction and scattering compared with particles of neat dolomite or calcite. We show how particles exhibit a range scattering values due to varying orientations of the inclusion phases. Extinction efficiencies for the heterogeneous particles with dolomite (3.47) and calcite (3.36) were 19% to 21% lower than extinction for marine background air particles (3.72). Extinction for the Asian dust was, however, generally higher than for the neat particles. Compared to iron carbonate, the presence of an absorbing iron oxide affected scattering in Asian dust particles even at the low oxide concentrations studied here (0.6% to 8.1%). Scattering efficiency decreased by <1% with a 1% increase in hematite but by 2% to 5% with magnetite. Asian dust scattered light strongly forward, but backscattering was 56% larger than for the marine background air particles. Backscattering in the Asian dust was also larger with magnetite than hematite. Single scattering albedo for Asian dust with hematite, magnetite, or soot averaged 0.96 ± 0.06 ( x ¯ ± s , n = 19 ) but was as low as 0.72 with a magnetite mass of 5.8%.

7.
Aerosol Sci Technol ; 51(4): 451-466, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690360

RESUMEN

Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading.

8.
J Geophys Res Atmos ; 122(18)2017.
Artículo en Inglés | MEDLINE | ID: mdl-32166054

RESUMEN

We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.

9.
Anal Chem ; 86(19): 9709-16, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25220253

RESUMEN

High-resolution microscopic analysis of individual atmospheric particles can be difficult, because the filters upon which particles are captured are often not suitable as substrates for microscopic analysis. Described here is a multiplatform approach for microscopically assessing chemical and optical properties of individual heterogeneous urban dust particles captured on fibrous filters during high-volume air sampling. First, particles embedded in fibrous filters are transferred to polished silicon or germanium wafers with electrostatically assisted high-speed centrifugation. Particles are clustered in an array of deposit areas, which allows for easily locating the same particle with different microscopy instruments. Second, particles with light-absorbing and/or light-scattering behavior are identified for further study from bright-field and dark-field light-microscopy modes, respectively. Third, particles identified from light microscopy are compositionally mapped at high definition with field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Fourth, compositionally mapped particles are further analyzed with focused ion-beam (FIB) tomography, whereby a series of thin slices from a particle are imaged, and the resulting image stack is used to construct a three-dimensional model of the particle. Finally, particle chemistry is assessed over two distinct regions of a thin FIB slice of a particle with energy-filtered transmission electron microscopy (TEM) and electron energy-loss spectroscopy associated with scanning transmission electron microscopy (STEM).

10.
Environ Sci Technol ; 48(6): 3169-76, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24548253

RESUMEN

We report the first mass-specific absorption and extinction cross sections for size- and mass-selected laboratory-generated soot aerosol. Measurement biases associated with aerosols possessing multiple charges were eliminated using mass selection to isolate singly charged particles for a specified electrical mobility diameter. Aerosol absorption and extinction coefficients were measured using photoacoustic and cavity ring-down spectroscopy techniques, respectively, for lacey and compacted soot morphologies. The measurements show that the mass-specific absorption cross sections are proportional to particle mass and independent of morphology, with values between 5.7 and 6 m(2) g(-1). Mass-specific extinction cross sections were morphology dependent and ranged between 12 and 16 m(2) g(-1) for the lacey and compact morphologies, respectively. The resulting single-scattering albedos ranged from 0.5 to 0.6. Results are also compared to theoretical calculations of light absorption and scattering from simulated particle agglomerates. The observed absorption is relatively well modeled, with minimum differences between the calculated and measured mass absorption cross sections ranging from ∼ 5% (lacey soot) to 14% (compact soot). The model, however, was unable to satisfactorily reproduce the measured extinction, underestimating the single-scattering albedo for both particle morphologies. These discrepancies between calculations and measurements underscore the need for validation and refinement of existing models of light scattering and absorption by soot agglomerates.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Hollín/análisis , Hollín/química , Absorción Fisicoquímica , Tamaño de la Partícula , Técnicas Fotoacústicas , Análisis Espectral
11.
Environ Sci Technol ; 47(15): 8575-81, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23763344

RESUMEN

Use of focused ion-beam scanning electron microscopy (FIB-SEM) to investigate the internal composition of atmospheric particles is demonstrated for assessing particle optical properties. In the FIB-SEM instrument equipped with an X-ray detector, a gallium-ion beam mills the particle, while the electron beam images the slice faces and energy-dispersive X-ray spectroscopy provides element maps of the particle. Differences in assessments of optical behavior based on FIB-SEM and conventional SEM were shown for five selected urban dust particles. The benefit of FIB-SEM for accurately determining the depth and size of optically important phases within particles was shown. FIB-SEM revealed that iron oxide grains left undetected by conventional SEM could potentially shift the single-scattering albedo of the particle from negative to positive radiative forcing. Analysis of a coke-like particle showed that 73% of the light-scattering inclusion went undetected with conventional SEM, causing the bulk absorption coefficient to vary by as much as 25%. Optical property calculations for particles as volume-equivalent spheres and as spheroids that approximated actual particle shapes revealed that the largest effect between conventional SEM and FIB-SEM analyses was on backscattering efficiency, in some cases varying several-fold.


Asunto(s)
Atmósfera , Polvo , Microscopía Electrónica de Rastreo/métodos
12.
Environ Sci Technol ; 45(17): 7380-6, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21774494

RESUMEN

Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in qualitatively determining the composition and origin of heterogeneous urban-air particles from high-resolution elemental maps. Coarse-mode particles were taken from samples collected in three U.S. cities: Atlanta, Los Angeles, and Seattle. Elemental maps distinguished particles with heterogeneously mixed phases from those with homogeneously mixed phases that also contained inclusions or surface adducts. Elemental mapping at low and high beam energies, along with imaging at an oblique angle helped to classify particles by origin. The impact of particle shape on X-ray microanalysis was demonstrated by having the beam enter the particle at ≥ 52° from normal. Potential misinterpretations of particle composition due to artifacts in the elemental maps were minimized by tilt imaging to reveal particle surface roughness and depth, mapping at low beam energies, noting the position of the EDX detector in the map field, and assessing differences in the mass absorption coefficients of the particle's major elements to anticipate X-ray self-absorption.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ciudades , Microanálisis por Sonda Electrónica/métodos , Monitoreo del Ambiente/métodos , Microscopía Electrónica de Rastreo/métodos , Espectrometría por Rayos X/métodos , Humanos , Tamaño de la Partícula , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...